was used as the base line for comparison with the other systems. A comparison of the data indicates that none of the new lubrication systems evaluated appeared to be better than castor oil and L17 lubricant. For five of the new lubricant systems the trials were stopped before extrusion breakthrough occurred. This was because either relatively excessive pressures were obtained or, in the case of Trial 346, because one pressure-recording instrument falsely indicated a high pressure. In Trials 345 and 365 extrusions were produced with pressures approximating those obtained with L17 lubricant (Trial 347). Although the extrusions produced in Trials 345 and 347 were of generally good quality, lubrication breakdown occurred as evidenced by stick-slip during runout and some areas of poor extruded surfaces. In the case of Trial 365, the combination of polyethylene glycol and L47 lubricant decreased the severity of stick-slip (as compared to castor oil in Trial 345), but did not eliminate it.

		Die Angle Extrusion Ratio		45 degreesStem Speed20:1Billet Surface			tem Spe illet Su	eed face Finish	20 ipm 60 to 100 microinches, rms	
Item	Trial	Hydrostatic Fluid	Billet Lubricant	Extrusi Breaktl Stem	ion Press hrough Fluid	Run Stem	00 psi out Fluid	Length of Extrusion, inches	Comments	
1	347	Castor oil	L17	162.0	152.0	144.0	130.0	65-1/2	Severe stick-slip followed by uniform Pr	
2	380	Castor oil	L8	180.0	172.5			0	$\ensuremath{\mathtt{P}}_b$ not reached; stopped at indicated pressure	
3	343	Water	L22	234.0	213.0			6	Pb not reached; die broke	
4	344	Water	L46	195.0	186.0			0	P_{b} not reached; stopped at indicated pressure	
5	346	Castor oil	L46	168.0	144.0			0	${\rm P}_{\rm b}$ not reached; stopped at indicated pressure prematurely because of false high pressure reading	
6	365	Polyethy- lene glycol	L47	165.0	154.5	143,0	136.5	62-1/2	High P _b peak; moderate stick-slip	
7	345	Castor oil	L47	165.0	156.5	14 1 .0	130.5	44	High Pb peak; severe stick-slip	
8	356	Castor oil	L51	202.0	187.5			0	Pb not reached; stopped at indicated pressure	

TABLE 2. EXPERIMENTAL DATA FOR COLD HYDROSTATIC EXTRUSION OF 7075 ALUMINUM ROUNDS

It is expected that additional lubricants will be investigated during the next report period.

Extrusion Evaluation

Several of the 7075-0 aluminum extrusions produced during the last interim report period were examined to evaluate extruded product quality. Surface roughness and hardness measurements were determined.

As indicated in Table 3, extruded surface quality of 7075-0 aluminum rounds showed little dependency on extrusion conditions when evaluated by surface roughness measurements. The spread in surface finish obtained over the entire range of extrusion conditions shown is small. Of particular significance is the large improvement in surface generally obtained as a result of hydrostatic extrusion. The fact that considerable variation in extrusion variables can be permitted without significantly affecting surface quality will be important in commercial application of the hydrostatic extrusion process.

TABLE 3.SURFACE ROUGHNESS OF 7075-0 ALUMINUM ROUNDS
HYDROSTATICALLY EXTRUDED UNDER VARIOUS
CONDITIONS

Die Angle	45 degrees
Fluid	Castor oil

	Extr	usion Conditio	Surface Roughness, microinches, rms		
Trial	Extrusion Ratio	Stem Speed	Lubricant	Before Extrusion	After Extrusion
249	20	20	L11	270	10-20
297	20	20	L11	300	40-90
283 281 319 322	20 20 40 60	20 20 20 20 20	L11 L17 L17 L17 L17	420-540(a) 400-500(a) 380-520(a) 350-500(a)	70-120 40-70 30-60 30-60
309	20	20	L17	100-250	20-30
310	20	80	L17	100-120	20-40
318	40	20	L17	45-65	50-120
324	60	20	L17	60-100	30-50

(a) Surface grit-blasted followed by vapor-blasting.

Hardness measurements made for extrusions made at a constant extrusion ratio showed no variation in hardness regardless of lubricant, stem speed, or type of extrusion curve variations. The increase in hardness obtained with increased area reduction is shown below:

Material Condition	Reduction in Area, percent	Vickers Hardness Number	
As-received	Es (Fillen, Eveloation)	90	
Extruded at 20:1	95.0	100	
Extruded at 40:1	97.5	115	
Extruded at 60:1	98.3	120	
	TATION OF MALERY AND A STORE OF A STORE		

As redicated in Table 1, extruded surface quality of 7072-0 education ruwed UGE dependency on extrusion contitues when avalanced by surface in-

6